
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2002; 40:241–251 (DOI: 10.1002/�d.335)

A shape function approach for high- and low- Reynolds
near-wall turbulence models

V. Boyer1;∗;† and D. Laurence2

1E.D.F.; M.F.T.T.; 6 quai Watier; BP 49; 78400 Chatou Cedex; France
2U.M.I.S.T.; Department of Mechanical Engineering; P.O. Box 88; Manchester; M60 1QD; U.K.

SUMMARY

A new numerical approach for wall functions is proposed, in order to bridge the gap between low-
and high-Reynolds near-wall turbulence modelling. It allows arbitrary sizes of near-wall cells with
the objective of using local grid re�nement or adaptive meshes in industrial calculations. This �nite
volume-�nite element approach is based on the introduction of assumed shape functions into the energy
conservation equations, for the determination of four wall scalings factors. Equilibrium assumptions are
avoided, and replaced by formal integration of budget equations in the �rst cell. The approach is proved
accurate and stable in a simple channel �ow, but the formalism was developed for non-equilibrium
situations where it still needs to be tested. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. OBJECTIVES

The most widely used turbulence models in industrial applications are based on Reynolds-
averaged Navier–Stokes �rst-order closures. The �rst category places the �rst calculation node
outside the viscous sub-layer, and by linking boundary conditions at the wall to points in the
inner part of the domain by ‘wall laws’ (see Reference [1] for the theory and Reference [2]
as an example of implementation in a code), these models avoid modelling vanishing e�ects
and extreme anisotropy of near-wall turbulence and most of all, the numerical di�culties due
to sharp variations of the variables near the wall. Thus, they lead to faster convergence and
allow to use coarse meshes. But they are valid only for high-Reynolds number (HRN) �ows,
are based on strongly limiting assumptions and hence do not take into account su�cient
phenomena in the near-wall area for many complex �ows (streamline curvatures [3], external
forces such as adverse pressure gradients or buoyancy, stagnation or separation points [4],
unsteadiness, heat or mass transfers). The alternative is to solve the equations up to the wall,
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with natural boundary conditions. This approach, known as low-Reynolds number (LRN)
formulation (�rst developed by Jones and Launder [5], widely reviewed in Reference [6]),
provides better results, but necessitates grids so �ne that they are too demanding for super
computer memories in many industrial applications. Moreover, even if unstructured or non-
conforming grids allow to consider local re�nements only in selected parts of the geometry,
no existing method allows to combine local mesh re�nement and LRN modelling in critical
regions of an otherwise generally HRN calculation for most of the geometry, i.e. there is no
numerical transition procedure between the HRN and LRN areas of the �ow.
The model proposed in the present work synthesizes both the HRN and LRN formulations.

In the HRN areas, coarse cells can be used, and in the LRN parts, cells size could go down to
y+ =1 (typical value of the distance to the wall in ‘wall units’ y+ in standard LRN models),
whereas it is restricted to y+¿30 in the HRN formulation. Still based on the concept of wall
functions, this model is as general as possible, since standard equilibrium assumptions are
not made during the elaboration of the new laws of the wall. Therefore, one can anticipate
that it should produce improved results for a wide range of �ows. The algorithm, integrating
the �nite volume-�nite element method with unstructured grids (see Reference [7]), is an
extension of the standard laws of the wall, also inspired from the two-layer models [8]. But
it is based on the use of re�ned shape functions and most of all with independent scaling
factors for each of the physical variables in the near-wall control volumes. Finally, it relies
on an energetic approach as the wall functions are determined through energy conservation
equations in the near-wall control volumes.

2. DESCRIPTION OF THE MODEL

2.1. Discretization of the domain

The domain is divided into two layers: the near-wall layer and the outer layer of the �ow.
In the latter, one considers a standard LRN model with a cell-centred �nite volume dis-
cretization. Calculations have been performed using the well-known Launder and Sharma
model [9] used in the inner layer, but more sophisticated models can also be implemented
(non-linear eddy-viscosity models, di�erential Reynolds-stress models, V2F [10], etc.). In the
near-wall cells of the mesh, U , k and � are described by the non-dimensional shape functions
Fu(y+); Fk(y+); F�(y+) multiplied by scaling factors introduced in such a way that they are
analogous to the usual friction velocity u∗:

U (y) = suFu(y+)

k(y) = s2kFk(y
+)

�(y) =
s4�
�
F�(y+)

y+ =
sy
�
y

(1)

The shape functions are complex enough to include the dependence of the variables (espe-
cially for k) on the turbulent Reynolds number and mimic the asymptotic behaviour of the
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Figure 1. Shape function for the velocity.

�ow at the wall. Thus, for the velocity, the well-known Reichard law

Fu(y+)=
1
0:41

ln(1 + 0:41y+) + 7:8
(
1:− e−y+=11 − y+

11
e−y

+=3
)

(2)

shown in Figure 1, is used.
The pro�le for the turbulent kinetic energy (which depends on the turbulent Reynolds

number Re) is obtained by �tting direct numerical simulation (DNS) results for a closed-
channel �ow. It reads thus:

Fk(y+)=

[
0:057 + 0:05

√
Re
1600

]
y+

2
e−y

+=7:3 + 4:6[1− e−y+=20] 1
4y+=Re+ 1

[1− e−(y+=3)2 ] (3)

Several pro�les for di�erent Reynolds numbers are drawn in Figure 2.
F� is also an analytical function �tting DNS results, which reproduces the theoretical 1=�y

behaviour in the logarithmic zone (see Figure 3):

F�(y+)=
1

�(y+4 + 154)1=4
(4)

2.2. Algorithm of resolution

The outer Navier–Stokes solver provides values of the variables in the outer layer, which
can then be interpolated to obtain the values of the turbulent kinetic energy k(h), the ve-
locity U (h); and the dissipation rate �(h) at the separation between the two layers. In the
near-wall layer, instead of solving the usual equations (momentum equation and k-equation),
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Figure 2. Shape function for the turbulent kinetic energy.

Figure 3. Shape function for the dissipation rate.

energy conservation equations are written, consisting of the mean �ow energy balance and
the turbulent kinetic energy balance in the �rst cells. These balances are obtained without any
assumptions by integration over the �rst control volume of the momentum equation multiplied

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 40:241–251



WALL FUNCTION APPROACH BASED ON SHAPE FUNCTIONS 245

by the velocity, which leads, one-dimensionally to[
−uvU + � @U

@y
U
]
(h)

−
∫ h

0
−uv@U

@y
dy − �

∫ h

0

@U
@y

2

dy + �ext
∫ h

0
U dy=

@
@t

∫ h

0

U 2

2
dy (5)

while integration of the k-equation leads to∫ h

0
−uv @U

@y
dy −

∫ h

0
� dy +

[
(�+ �t)

@k
@y

]
(h)
=
@
@t

∫ h

0
k dy (6)

h being the size of the �rst cell and �ext the external forces (including pressure gradient,
buoyancy, rotation e�ects, etc.). The closure is made with a linear eddy-viscosity model

−uv= �t @U@y (7)

where the eddy viscosity is de�ned through another shape function

�t =f�(y+)y k1=2

f�(y+) =Cte� (1− e−y
+=A�)2

(8)

Pro�les (1) are then cast into the energy balances (5) and (6) for each iteration. With
equations (1) written at point h; using the values U (h) and �(h), this leads to a set of
four algebraic equations that one can solve to determine the scaling factors. Finally, boundary
conditions to be applied at the separation for the next iteration of the outer solver are expressed
in terms of scaling factors and shape functions, which are then known for every variable.
Neumann conditions (�ux conditions) are applied for the velocity and the dissipation rate, i.e.

@U
@y

∣∣∣∣
y=h

= su
sy
�
F ′
u (h

+) (9)

and

@�
@y

∣∣∣∣
y=h

=
s4� sy
�2
F ′
� (h

+) (10)

while a Dirichlet condition is used for the turbulent energy, easily expressed as

k(h)= s2kFk(h
+) (11)

Remark
Although one prefers writing boundary conditions as �uxes, especially in an FV formalism,
�xing the value of at least one of the variable somewhere in the mesh through this Dirichlet
condition is necessary to ensure consistency (see Reference [2]).

2.3. Determination of the scaling factors

From U (h) and �(h) values of the velocity and the dissipation rate at the separation provided
by the nth inner solver iteration, the algorithm used for searching the scaling factors used can
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be described as follows:

• Determine sn+1y as the solution of the implicit relation through the �x-point method

sy=
U (h)
Fu(hsy=�)

(12)

Then one de�nes

h+ =
hsn+1y

�
(13)

• Using this new value h+, initialize s� and su by

s� =
�(h)
F�(h+)

su = sn+1y

(14)

• Determine sn+1k as the unique positive root of the following polynomial, resulting from
the kinetic energy budget

A(h+)s2k + B(h
+)sk + C(h+) = 0

A(h+) = sn+1y f�(h+)h+
√
Fk(h+)F ′

k (h
+)−

∫ h+

0
F�(y+) dy+

B(h+) = (sn+1y )2F ′
k (h

+)

C(h+) = s2us
n+1
y

∫ h+

0
f�(y+)y+

√
Fk(y+)F ′2

u (y
+) dy+

(15)

It is obtained after the introduction of the scaling factors su; s� and sy coming from the
former operations, and the shape functions (2)–(4) in the turbulent energy conservation
equation (6), assuming that the �ow is steady.

• In the same way, determine sn+1u as the solution of

D(h+)su + E(h+) = 0

D(h+) = sn+1y Fu(h+)F ′
u (h

+)[f�(h+)h+sn+1k

√
Fk(h+) + sn+1y ]

−sn+1y

∫ h+

0
[f�(y+)y+sn+1k

√
Fk(y+) + sn+1y ]F ′2

u (y
+) dy+

E(h+) = �ext�
∫ h+

0
Fu(y+) dy+

(16)

deriving from the momentum balance (5).
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• Apply the relation

sn+1� = 1=4

√
(sn+1k )3sn+1y (17)

deriving from the Kolmogorov analysis to obtain the last scaling.
• Write sy= sn+1y ; su= sn+1u ; sk = sn+1k ; and s�= sn+1� .
• Finally, apply boundary conditions through relations (9)–(11)

Remark
In opposition to standard wall functions, sy is not presumed identical to sk since Kolmogorov
scaling would require that it also depends on s�. Actually, the new approach is an extension
of the usual wall functions’ features where only two di�erent scalings are used (in the best
case) with very simple shape functions (if not simplistic). Indeed, a parallel between the
newly proposed approach and the classical ‘two velocity scales’ leads to expressing the latter
as

su = u∗; sk = sy= uk ; s3e = ukuku∗

Fu(y+) =
1
�
ln(y+) + C

Fk(y+) = (C�)−1=2

F�(y+) =
1
�y+

Furthermore, the model does not rely on the standard equilibrium assumption
(production equals dissipation) and takes into account the in�uence of the external forces
�ext.

3. RESULTS AND PERFORMANCES

The model is at �rst tested in a 1D steady closed-channel �ow at several Reynolds num-
bers Re= eu∗=� (e being the half-width of the channel). The LRN model chosen for the
inner layer of the domain is the well-known Launder and Sharma model [4] for its sim-
plicity. The cell-centred �nite volume method is applied only to the outer part of the �ow,
as the near-wall layer is totally described by the scaling factors and the shape functions.
Then the mesh starts at distance h from the wall, up to distance e and contains N control
volumes (of arbitrary sizes). One has to keep in mind that values calculated at the centre
of the cells represent averaged values over the cells. At the boundary y= h; values needed
by the algorithm for the determination of the scalings (e.g. U (h); �(h); : : :) are interpolated
from the mean values in the �rst cells of the mesh and �uxes between the two layers.
The boundary conditions needed in the �nite volume formulation, are expressed directly by
(9) and (10) or reconstructed from (11). The equations of the turbulent variables are cou-
pled to increase the stability of the resolution. The matrix deriving from the discretization is
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Figure 4. Closed channel-�ow results at turbulent Reynolds Re=395.

solved by a BiCG-Stab algorithm (because of the coupling, the matrix to be inverted is not
symmetrical).
Results obtained with the new shape function–wall function approach (denoted SFWF) are

compared in more Figure 4 with direct numerical simulation (or DNS) data and Launder and
Sharma (or LS) results in the case of Re=395 (low-Reynolds number �ow). This is not limi-
tative, the results being similar to Re=180 and 2000. Most of the results shown correspond to
a �rst cell size h+ =15 (SFWF (h+=15) in the legend), because this value is the most di�-
cult to deal with (as it corresponds to the peaks in k and �) and corresponds to the cell sizes
leading to poor results with the HRN formulation. Though, a wide range of sizes have been
tested, from h+ =2:5 to 100, to ensure that the new approach provides good results, for any
value of h. As the �rst cell is not taken into account in the resolution of the inner solver, shape
functions multiplied by the scalings provided by the calculation have been added to the budgets
(see SF 15).
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Remark
The results presented Figure 4 are non-dimensional, which means they are normalized as in
the following:

U+ =
U
su

k+ =
k
s2k

�̃+ =
�̃�

s3�

�+t =
�t
�

(18)

Note that in order to simplify the comparison between SFWF and LS results, �̃ has been used
instead of �. Both can be related by the relation

�̃= �− 2�
(
@
√
k

@y

)2
(19)

The SFWF method provides much better results than LS, particularly concerning the pre-
diction of the turbulent energy k peak (see k-budget), the conservation of the �ow rate
(overestimated by LS) and the prediction of the turbulent viscosity in the central part of the
channel. Still this is an obvious consequence of the proper tuning of the shape functions on
the DNS data, and the main achievement here is that results concerning U; �̃; and �t are com-
pletely independent of the chosen h. Velocity pro�les SFWF (h+=2:5) and SFWF (h+=30)
(for h+ =2:5 and 30) have been added to the U -budget They have been o�set by a constant
(±3) for visibility, but they are strictly identical to SFWF (h+ =15). More sensitivity to h
is found for k, probably due to the Dirichlet condition (11) leading to the dependence of the
solution on the accuracy of Fk in describing the true k-pro�le. Nevertheless, for any value of
h, the k-budget is bounded by the curves SFWF (h+ =2:5) and SFWF (h+ =30), and thus
always shows a better agreement with the DNS data than in the LS case.
In addition, the new algorithm is endowed with great stability and very fast convergence.

The LS model needs grids �ve times �ner than SFWF to reach spatial convergence. Moreover,
the maximum time step allowed by SFWF is from 5 to 30 times greater than the one in LS
calculation, i.e. inversely proportional to the �rst cell size as can be expected from physical
arguments, which implies large time and memory savings for industrial calculations. For
example, when h+ =30, SFWF only needs 250 iterations, to converge, versus 2000 for the
LS calculation. To illustrate meshing savings, those used for the H 15 and LS calculations
have been added to �̃+-budget (referring to the dissipation rate �̃ used in the Launder and
Sharma model, normalized).

4. CONCLUSION

A new numerical approach based on intensive use of complex shape functions for all the
variables in the �rst cell of the domain is proposed, in order to reach the challenging aim of
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modelling the wall behaviour of the �ow with the same accuracy as an LRN, whatever the size
of the near-wall cell. This approach, named in the present work SFWF (for shape function–
wall function) is as general as possible as no restrictive equilibrium assumption is made, and
the formulation is universal (code independent). The results obtained in the simple case of
a fully-developed channel �ow are very encouraging, concerning both the accuracy and the
numerical stability, even if the model has not been tested yet in more complex con�gurations
(3D, buoyancy, adverse pressure gradients, etc.). Moreover, it is very promising for industrial
applications, as it leads to fast convergence and allows the use of coarse meshes.

NOMENCLATURE

y distance to the wall
h size of the near-wall cell
y+; h+ non-dimensional distances
U velocity
k turbulent kinetic energy
� dissipation rate
�̃ dissipation rate in the Launder and Sharma model
u∗ friction velocity
sy scaling factor for the distance to the wall
su scaling factor for the velocity
sk scaling factor for the turbulent kinetic energy
s� scaling factor for the dissipation rate
� molecular viscosity
�t turbulent viscosity
−uv shear stress
t time
f� shape function for the turbulent viscosity
A�; Cte� constants used to de�ne f�
�ext external forces
e half-width of the channel
n+ 1 refers to the current time iteration
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